Electron Paramagnetic Resonance of Rhyolite and γ -Irradiated Trona Minerals

F. Köksal, R. Köseoğlu^a, and E. Başaran^b

Physics Department, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey ^a Physics Department, Faculty of Arts and Sciences, Niğde University, Niğde, Turkey ^b Physics Department, Faculty of Arts and Sciences, Gebze HighTechnology Institute, İstanbul, Turkey

Reprint requests to Prof. F. K.; Fax: +90-362-457 6081; E-mail: koksalf@omu.edu.tr

Z. Naturforsch. **58a**, 293 – 298 (2003); received January 2, 2003

Rhyolite from the "Yellow Stone of Nevşehir" and γ -irradiated trona from the Ankara Mine have been investigated by electron paramagnetic resonance at ambient temperature and at 113 K. Rhyolite was examined by X-ray powder diffraction and found to consist mainly of SiO₂. Before γ -irradiation, the existing paramagnetic species in rhyolite were identified as $\dot{P}O_4^2$, $\dot{C}P_4$, $\dot{C}P_4$, $\dot{C}P_5$, $\dot{C}P_5$, $\dot{C}P_5$, $\dot{C}P_5$, and $\dot{C}P_5$ free radicals and Fe³⁺ at ambient temperature. At 113 K $\dot{S}P_5$, $\dot{C}P_5$, $\dot{C}P_5$, and $\dot{C}P_5$ radicals and Fe³⁺ were observed. The γ -irradiation produced neither new species nor detectable effects on these free radicals. The disappearance of some of the radicals at 113 K is attributed to the freezing of their motions. Before γ -irradiation, the trona mineral shows only Mn²⁺ lines, but after γ -irradiation it indicated the inducement of $\dot{C}P_5$ radicals at ambient temperature, 113 K, in addition to the Mn²⁺ lines. The g and g values of the species were determined.

Key words: Electron Paramagnetic Resonance; Free Radicals; Silicate; Rhyolite; Trona; γ -Irradiation.